Fast Distributed First-Order Methods

نویسندگان

  • Asuman Ozdaglar
  • I-An Chen
چکیده

This thesis provides a systematic framework for the development and analysis of distributed optimization methods for multi-agent networks with time-varying connectivity. The goal is to optimize a global objective function which is the sum of local objective functions privately known to individual agents. In our methods, each agent iteratively updates its estimate of the global optimum by optimizing its local function and exchanging estimates with others in the network. We introduce distributed proximal-gradient methods that enable the use of a gradient-based scheme for non-differentiable functions with a favorable structure. We present a convergence rate analysis that highlights the dependence on the step size rule. We also propose a novel fast distributed method that uses Nesterov-type acceleration techniques and multiple communication steps per iteration. Our method achieves exact convergence at the rate of O(1/t) (where t is the number of communication steps taken), which is superior than the rates of existing gradient or subgradient algorithms, and is confirmed by simulation results. Thesis Supervisor: Asuman Ozdaglar Title: Class of 1943 Associate Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Fast Charging Methods Using Genetic Algorithm and Coordination between Chargers in Fast Charging Station of Electric Vehicles in Order to Optimal Utilization of Power Capacity of Station

Fast charging stations are one of the most important section in smart grids with high penetration of electric vehicles. One of the important issues in fast chargers is choosing the proper method for charging. In this paper, by defining an optimization problem with the objective of reducing the charging time, the optimal charging levels are obtained using a multi-stage current method using a gen...

متن کامل

A Distributed Newton Approach for Joint Multi-Hop Routing and Flow Control: Theory and Algorithm

The fast growing scale and heterogeneity of current communication networks necessitate the design of distributed cross-layer optimization algorithms. So far, the standard approach of distributed cross-layer design is based on dual decomposition and the subgradient algorithm, which is a first-order method that has a slow convergence rate. In this paper, we focus on solving a joint multi-path rou...

متن کامل

Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks

Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Improving Fast Dual Ascent for MPC - Part I: The Distributed Case ⋆

In dual decomposition, the dual to an optimization problem with a specific structure is solved in distributed fashion using (sub)gradient and recently also fast gradient methods. The traditional dual decomposition suffers from two main short-comings. The first is that the convergence is often slow, although fast gradient methods have significantly improved the situation. The second is that comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012